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New Exact Solitary Wave Solutions of the
KS Equation

Zhang Jiefang1

Received September 2, 1998

Two methods are described for obtaining new exact solitary wave solutions of
the KS equation. Because these two methods are essentially equivalent the results
obtained here are the same.

1. INTRODUCTION

Solving for the exact solitary wave solutions of nonlinear evolution

equations has long been a major concern for both mathematicians and physi-

cists. Although various methods for obtaining solitary wave solutions to

nonlinear evolution equations have been established, it is not easy to find

the exact solutions of some nonlinear evolution equations, particalarly nonin-
tegrable nonlinear evolution equations. In this paper, by using two different

methods, we study the exact solitary wave solutions of the Kuramoto±

Sivashinsky (KS) equation

ut 1 uux 1 a uxx 1 b uxxxx 5 0 (1)

where a and b are constants. Equation (1) is a nonintegrable system, and it

is one of the simplest nonlinear partial differential equations that exhibit

chaotic behavior. Equation (1) was derived by Kuramoto and Tsuzaki (1975a,
b) in the context of reaction±diffusion systems and by Sivashinsky (1977)

for flame front propagation. Equation (1) has also appeared in other physical

systems, such as long waves on thin films (Lin, 1974; Nakaya, 1975; Babchin,

1983; Topper and Kawahara, 1978), dissipative ion modes in plasmas (Laquey

et al., 1975; Cohen et al., 1976), and interfacial instability between viscous
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fluids (Hooper and Grimshaw, 1985). Here we look for the traveling solution

of Eq. (1), that is, a solution on the form

u(x, t) 5 u( j ), j 5 k(x 2 wt) (2)

where k, w are constants to be determined.

Substituting (2) into (1), we have

2 wu 1
1

2
u2 1 aku j 1 b k3u j j j 5 C (3)

where C is an integration constant.

2. SPECIAL TRUNCATED EXPANSION METHOD

The special truncated expansion method was introduced by Lu et al.
(1993). They assume the following special truncated expansion:

u(x, t) 5 u( j ) 5 o
N

n 5 0

AnF
n (4)

where

F 5
1

1 1 e j , j 5 k(x 2 wt) (5)

From (4), we have

d ku

d s k 5 o
N

n 5 1
An o

k

n 5 0
A(k)

nmF n 1 m (6)

A(k 1 1)
nm 5 (n 1 m 2 1)A(k)

n(m 2 1) 2 (n 1 m)A(k)
nm (7)

A(k)
nm 5 ( 2 1)n(n 1 1) ? ? ? (n 1 m 2 1) o

j1 1 ? ? ? 1 jmk 2 m

0 , j1, ? ? ? , jm # k 2 m

n j1 ? ? ? (n 1 m) jm(8)

A0
nn 5 1, n $ 1 (9)

We balance the highest power of F in the nonlinear term uux with the

highest power of F in the fourth-order derived term uxxxx in Eq. (1) to obtain

2N 1 1 5 N 1 4, so that N 5 3. Thus we let

u(x, t) 5 u( j ) 5 A0 1 A1F 1 A2F
2 1 A3F

3 (10)
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Substituting (10) into (2) and collecting term with the same power of F,

we have

F 6:
1

2
A 2

3 1 60 b k3 A3 5 0 (11)

F 5: A2A3 1 b k3(24A2 2 144A3) 5 0 (12)

F 4:
1

2
(A2

2 1 2A1A3) 1 3 a k A3 1 b k3(6A1 2 54A2 1 111A3) 5 0 (13)

F 3: 2 w A3 1 (A0 A3 1 A1A2) 1 a k(2A2 2 3A3) 1 b k3( 2 12A1 (14)

1 38A2 2 27A3) 5 0

F 2: 2 w A2 2
1

2
(A2

1 1 2A0 A2) 1 a k(A1 2 2A2) 1 b k3(7A1 2 8A2) 5 0 (15)

F 1: A1( 2 w 1 A0 2 a k 2 b k3) 5 0 (16)

F 0: 2 w A0 1
1

2
A2

0 5 C (17)

From (11), we obtain

A3 5 2 120 b k3 (18)

Then substituting (18) into (12), we find

A2 5 180 b k3 (19)

From (16), we can give two cases: (i) For

A1 5 0 (20)

from (13)±(15), we find

k2 5 2
a

19 b
, w 5 30 b k3 1 A0 (21)

(ii) For A1 Þ 0, from (13)±(15), we find

k2 5
2 11 a
19 b

, w 5 A0 2 a k 2 b k3 (22)

A1 5 2 62 b k3 2 2 a k (23)

So we have two new kinds of solitary wave solutions of Eq. (1):

u1(x, t) 5 u1( j ) 5 A0 1 180 b k3
1F

2 2 120 b k3
1F

3 (24)
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where k1 5 ( 2 a /19 b )1/2, w1 5 30 b k3
1 1 A0; and

u2(x, t) 5 u2( j ) 5 A0 2
720 a k

19
F 1 180 b k3F 2 2 120 b k3F 3 (25)

where k2 5 (11 a /19 b )1/2, w2 5 A0 2 a k2 2 b k3
2.

Noting that

F( j ) 5
1 2 tanh( j /2)

2
(26)

we find that solutions (24) and (25) become

u1(x, t) 5 w1 1
90

19
a k1 tanh[k1(x 2 w1t)] 1 120 b k3 tanh3[k1(x 2 w1t)]

(27)

where k1 5 ( 2 a /76 b )1/2, w1 5 2 (60/19) a k1 1 A0; and

u2(x, t) 5 w2 2
270

19
a k2 tanh[k2 (x 2 w2t)]

1 120 b k3
2 tanh3[k2(x 2 w2t)] (28)

where k2 5 (11 a /76 b )1/2, w2 5 2 (60/19) a k2 1 A0

3. HYPERBOLIC TANGENT FUNCTION METHOD

The hyperbolic tangent function method was has been used extensively

(Heremann et al., 1986; Lan and Wang, 1989; Malfliet, 1992). They assume

the following hyperbolic tangent function expansion:

u(x, t) 5 u ( j ) 5 o
N

n 5 0

an tanh j n (29)

We balance the highest power of tanh j in the nonlinear term uux with

the highest power of tanh j in the fourth-order derived term uzzzz in Eq. (1)
to obtain 2N 1 1 5 N 1 4, so that N 5 3. Thus we let

u(x, t) 5 u( j ) 5 a0 1 a1 tanh j 1 a2 tanh2 j 1 a3 tanh3 j (30)

Substituting (30) into (2) and collecting term with same power of tanh j ,

we have

tanh6 j :
1

2
a2

3 2 60a3 b k3 5 0 (31)

tanh5 j : a2 (a3 1 24 b k 3) 5 0 (32)
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tanh4 j :
1

2
a2

2 1 a1a3 2 3 a ka3 2 6 b k 3 a1 1 114 b k3 a3 5 0 (33)

tanh3 j : 2 wa3 1 a1a2 1 a0a3 2 2 a ka2 2 40 b k 3 a2 5 0 (34)

tanh2 j : 2 wa2 1
1

2
a2

1 1 a0a2 2 a ka1 1 3 a ka3 1 8 b k3 a1

2 60 b k3 a3 5 0 (35)

tanh1 j : 2 wa1 1 a0a1 2 2 a ka2 1 16 b k3 a2 5 0 (36)

tanh0 j : 2 wa0 1
1

2
a2

0 1 a ka1 1 6 b k3 a 3 5 0 (37)

From (31), we obtain

a3 5 2 120 b k3 (38)

From (32), we have

a2 5 0 (39)

From (34), we have

a0 5 w (40)

From (33), we find

a3 5 120 b k3 1
60

19
a k (41)

From (35), we obtain

( 2 a 2 76 b k2) (11 a 2 76 b k2) 5 0 (42)

so k has two solutions

k2
1 5

2 a
76 b

, k2
2 5

11 a
76 b

(43)

Considering (38)±(43), we obtain two new kinds of solitary wave solu-

tions of Eq. (1),

u1 (x, t) 5 w 1
90

19
a k1 tanh [k1 (x 2 wt)] 1 120 b k3

1 tanh3[k1 (x 2 wt)]

(44)
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u2 (x, t) 5 w 2
270

19
a k2 tanh[k2 (x 2 wt)] 1 120 b k2

2 tanh3 [k2 (x 2 wt)]

(45)

where k1 5 ( 2 a /76 b )1/2 or k 2 5 (11 a /76 b )1/2, and w is an arbitrary constant.

4. CONCLUSION

In summary, we have obtained two kinds of solitary wave solutions of

the KS equation by two different methods. In fact, these two methods are
essentially equivalent because we have the expression F ( j ) 5 1/2 [1 2 tanh

( j /2)], so we obtain the same solitary wave solutions of Eq. (1). It would be

interesting to study other nonlinear evolution equations by using these two

different methods; we leave this to future study.
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